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MICROBIAL DYNAMICS DURING A
CYANOBACTERIAL BLOOM COLLAPSE

A MESOCOSM APPROACH
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Phytoplankton blooming impact ?

Phytoplankton blooms, mainly cyanobacterial ones, are annua
events leading to strong perturbations in eutrophic ecosystems such
as the decrease of phytoplanktonic diversity, potential release of

toxins, and hypoxia

=> One of the main consequences is the huge release of OM when

the bloom collapses
=> A good scenario to disentangle the mechanisms underlying the

synergy between OM and microbial heterotrophs
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Phytoplankton selectivity ?
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Phytoplankton selectivity ?
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Phytoplankton selectivity ?

=> Synergy established between microbial heterotrophs and
organic matter
=> Mainly driven by its bioavailability, chemical composition
as well as its biotic origin
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Phytoplankton selectivity ?

=> Synergy established between microbial heterotrophs and
organic matter

=> Mainly driven by its bioavailability, chemical composition
as well as its biotic origin
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Size matters in aquatic ecology?

increasing reality >
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Mesocosm approach

N,-fixing and non-fixing
bloom-forming cyanobacteria
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Mesocosm approach
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How organic matter respond ?

Refractory
% oM

Labile

oM

8

12

T
16

20

24

28

32

=> Significant mineralization o
labile pool of OM by microbial
heterotrophs in a short term

=> No difference of mineralizatio
according to the biotic origin

=> Refractory OM accumulation

é)iEES PARIS



How organic matter respond ?

Fluorescence cDOM / DOC
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How organic matter respond ?
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How organic matter respond ?

C A MM+A

EEEE
8 => Significant mineralization of the
75 Refractory labile pool of OM by microbial
g .. i oM heterotrophs in a short term
=
2 6
e <{> $ % => No differences of mineralization
£ s l Labile according to the biotic origin

4 oM

0 4 8 15 16 20 2; 28 32 .
=> Refractory OM accumulation

Late response

Early response| => Rapid evolution of the O
quality during mineralization

f n\/:_'?>. => OM trajectory according t

the biotic origin, with differe
resilience response

Stress =0.15
T T T T T 1

-0.4 -0.2 0.0 0.2 04 06

é)iEES PARIS




1)
o
N
N~
b
N
2

How microbial communities respond ?
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How microbial communities respond ?
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=> Emergence of specific microbial groups = Bacilli
=> According to the biotic origin of OM
=> Remain after 30 days
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To conclude

Cyanobacterial bloom senescence

= Strong and impact on the OM pool with a more
refractory quality

= Intense and rapid impact on the PA and FL
microbial communities

= No return to the initial state of the natural
freshwater communities

= Appareance of Bacilli members, specifically
Exiguobacterium spp followed by Bacillus spp
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